MATEMATIKA-SIFAT-SIFAT LOGARITMA-PERTEMUAN 8
Pada penulisan logaritma alog b = c, a disebut bilangan pokok dan b disebut bilangan numerus atau bilangan yang dicari nilai logaritmanya (b > 0) dan c merupakan hasil logaritma. Jika nilai a sama dengan 10, biasanya 10 tidak dituliskan sehingga menjadi log b = c. Jika nilai bilangan pokoknya merupakan bilangan e (bilangan eurel) dengan e = 2,718281828 maka logaritmanya ditulis dengan logaritma natural dan penulisannya dapat disingkat menjadi ln, misalnya elog b = c menjadi:
ln b = c
ln b = c
ini sejumlah contoh logaritma: ini sejumlah contoh logaritma:
Perpangkatan | Contoh Logaritma |
21 = 2 | 2log 2 = 1 |
20 = 1 | 2log 1 = 0 |
23 = 8 | 2log 8 = 3 |
2-3 = 8 | 2log = – 3 |
9log | |
103 = 1000 | log 1000 = 3 |
1. Sifat Logaritma dari perkalian
Suatu logaritma merupakan hasil penjumlahan dari dua logaritma lain yang nilai kedua numerus-nya merupakan faktor dari nilai numerus awal. Berikut modelnya:
alog p.q = alog p + alog q
dengan syarat a > 0, , p > 0, q > 0.
2. Perkalian Logaritma
Suatu logaritma a dapat dikalikan dengan logaritma b jika nilai numerus logaritma a sama dengan nilai bilangan pokok logaritma b. Hasil perkalian tersebut merupakan logaritma baru dengan nilai bilangan pokok sama dengan logaritma a, dan nilai numerus sama dengan logaritma b. Berikut model sifat logaritma nya:
alog b x blog c = alog c
3. Sifat Logaritma dari pembagian
Suatu logaritma merupakan hasil pengurangan dari dua logaritma lain yang nilai kedua numerus-nya merupakan pecahan atau pembagian dari nilai numerus logaritma awal. Berikut modelnya:
alog = alog p – alog q
dengan syarat a > 0, , p > 0, q > 0.
4. Sifat Logaritma berbanding terbalik
Suatu logaritma berbanding terbalik dengan logaritma lain yang memiliki nilai bilangan pokok dan numerus-nya saling bertukaran. Berikut modelnya:
alog b =
dengan syarat a > 0, .
5. Logaritma berlawanan tanda
Suatu logaritma berlawanan tanda dengan logaritma yang memiliki numerus-nya merupakan pecahan terbalik dari nilai numerus logaritma awal. Berikut modelnya:
alog = – alog
dengan syarat a > 0, , p > 0, q > 0.
6. Sifat Logaritma dari perpangkatan
Suatu logaritma dengan nilai numerus-nya merupakan suatu eksponen (pangkat) dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi bilangan pengali. Berikut modelnya :
alog bp = p. alog b
dengan syarat a > 0, , b > 0
7. Perpangkatan Bilangan Pokok Logaritma
Suatu logaritma dengan nilai bilangan pokoknya merupakan suatu eksponen (pangkat) dapat dijadikan logaritma baru dengan mengeluarkan pangkatnya menjadi bilangan pembagi. Berikut modelnya:
dengan syarat a > 0, .
8. Bilangan pokok logaritma sebanding dengan perpangkatan numerus
Suatu logaritma dengan nilai numerus-nya merupakan suatu eksponen (pangkat) dari nilai bilangan pokoknya memiliki hasil yang sama dengan nilai pangkat numerus tersebut. Berikut model sifat logaritma nya:
alog ap = p
dengan syarat a > 0 dan .
9. Perpangkatan logaritma
Suatu bilangan yang memiliki pangkat berbentuk logaritma, hasil pangkatnya adalah nilai numerus dari logaritma tersebut. Berikut modelnya:
dengan syarat a > 0, , m > 0.
10. Mengubah basis logaritma
Suatu logaritma dapat dipecah menjadi perbandingan dua logaritma sebagai berikut:
dengan syarat a > 0, , p > 0, q > 0
0 Response to "MATEMATIKA-SIFAT-SIFAT LOGARITMA-PERTEMUAN 8"
Posting Komentar